

Dissecting the Silver Bullet

Key Considerations in Energy Storage Hybrid Projects

Clean Power, June 2021

Presented By: Shawn Shaw PE, Head of Solar and Energy Storage

Shawn Shaw, P.E. Head of solar and energy storage

- Joined Natural Power in autumn 2018
- Leads global team of industry experts
- 17 years in industry with expertise in:
 - Technical design reviews & inspections
 - Performance analyses & testing
 - Quality assurance codes & standards
 - Microgrids & energy resilience
 - Due diligence & independent engineering
- Member of ESIC, NY-BEST, and SEIA Quality Assurance Working Group
- Background in applied physics, economics, and electrical engineering

5/26/2021

5/26/2021

Energy Storage Project Experience Summary

2+ GWh Global Experience in Portfolios and Projects from C&I to 400MWh Scale

Technical Due Diligence (1+ GWh)

- Design & technology
- Major agreements
- Market and financial risks

Independent and Owner's Engineering (1+ GWh)

- Testing and commissioning
- Construction monitoring and inspections
- Commissioning, codes, and standards

Other Storage Experience

- Hybrid projects and portfolios
- Feasibility studies
- Fire safety and risk assessment

5/26/2021

Discussion Topics

Understanding the US ESS Market and Technology Trends

Why is Storage the Silver Bullet?

- → Falling costs
- → Expanding value proposition
- → Co-location options

What to Know Before Adding Storage to a **Project**

- → How to make your ESS pay
- → Safety is key
- → Not all batteries are created equal

Energy Storage

The Silver Bullet

Energy Storage Market Expanding

2021 is the Year to Move

U.S. energy storage annual deployment forecast, 2012-2025E (MW)

Over 60GW of storage in US interconnect queues and 25%-67% of PV projects in interconnection queue include storage.

Lithium-Ion Energy Storage

Why have Lithium-ion batteries dominated global markets?

Lithium-ion battery prices have fallen dramatically over the last decade and now offer a cost-effective method of large-scale storage.

Source: BloombergNEF

Know your revenue streams

A few of the things that an ESS can do

Revenue Stream	Typical Value	Typical Tenor	Volatility	Benefits	Risks
Arbitrage	Variable	Open	Medium	Dynamic battery schedule	Day ahead/RT pricing
Frequency Regulation	High	0-5 Years	High	High revenue	Penalty payments, Market cannibalization
Spinning Reserve	High	1 month	Low	High price per MWh	Day time action Closes other markets
Capacity/ RA	Medium	1 Year	Low	Pay for availability	Decreasing revenue – derating

ESS is also frequently paired with renewables to capture clipping, curtailment, and arbitrage opportunities

Grid Integration

The Solar Example

AC coupled system

Pros:

Easier to retrofit
Can participate in more grid services

Cons:

More complex interconnection System will not recover from low battery if there is no backup generator

DC coupled system

Pros:

Better for charging batteries More efficient if most energy needs to be stored

Can capture "clipping" losses from PV

Cons:

Market participation limited by inverter size and current mode

Things to Know About Energy Storage

More than just "adding a battery" to your existing project

Revenue Stacking is Key to ESS Value

Energy Storage's #1 Buzz Term

- → ESS dispatch profile can be tightly controlled
- → Each time step has a value:

Day ahead energy

Real-time energy

Ancillary services

- → But we don't always know that value perfectly
- → Don't forget-ESS can provide value by discharging AND charging, so cleverly optimizing is key

12 5/26/2021

California Standalone Utility Scale BESS

Typical for a Large Utility Scale ESS with COD in 2020-2022

natural power

System Information

- → 300-500 MWh, 100 MW Li-Ion BESS (a "4 hour" battery)
- → Located in Southern CA

Markets and Annual Revenue Estimates (Years 1-5)

- → Resource Adequacy: \$6M-\$8M
- → DA-RT Energy Arbitrage: \$8M-\$16M
- → Regulation Up/Down: \$5M-\$8M
- → Spinning Reserve: \$1M-\$3M

Typical Costs

- → CAPEX: \$200-\$400 per kWh
- → OPEX: \$5-\$8 per kWh

13 5/26/2021

Lithium-Ion Energy Storage

Li-ion batteries offer one of the most energy dense forms of storage. Few other storage technologies can offer the same energy density at the price of Lithium-ion.

What are the mainstream technologies in the U.S?

Lithium-ion still dominates the market, accounting for 99.2% share in Q3 2019

Lead-acid hovers around 0.8%; a single vanadium flow battery project in Q3 accounts for roughly 0.01% share

Quarterly energy storage deployment share by technology (MW %)

^{* &}quot;Other" includes flywheel and unidentified energy storage technologies. Source: Wood Mackenzie Power & Renewables

Know Your Options

The process of producing electricity remains broadly the same in all Lithium-ion batteries. However, changing the materials used for the anode and cathode can produce batteries with varying characteristics.

Short Name	Name	Anode	Cathode	Energy density Wh/kg	Cycles	Sample Manufacturers
NMC	Lithium Nickel Manganese Cobalt Oxide	Graphite	Li Ni0.6 Co0.2 Mn0.2 O2	120- 300	3000-10,000	BYD, Samsung, LG Chem, CATL
LFP	Lithium Iron Phosphate	Graphite	Li Fe PO4	50-130	6000-8000	BYD, Saft, CATL
LTO	Lithium Titanate	LiTO2	Various	70-80	15,000- 20,000	Toshiba, Kokam, Leclanche
LMO	Lithium Manganese Oxide	Graphite	LiMn2O4	100- 150	300-700	Saft, AESC
NCA	Lithium Nickel Cobalt Aluminium Oxide	Graphite	LiNiCoAlO2	200- 260	500	Tesla (Panasonic)

Fire Safety Risks

Is Lithium-Ion Safe?

ESS safety is a key factor in permitting and insurability

- → ESS have been subject to scrutiny over risks:
 - → Thermal runaway
 - → Fire
 - → Explosion
- → Typical considerations include:
 - → Ventilation
 - → Explosion control
 - Gas/fire/smoke detection
 - Suppression system(s)
 - → Fire-testing and spacing of battery racks
 - Materials and construction of containers/enclosures
- → Proper system design requires large-scale fire testing to UL 9540A or equivalent
 - → Provides key data on smoke output and composition
 - → Key flame spread characteristics needed for spacing/layout
 - → Some chemistries, as deemed to have minimal explosion risk, are exempted (e.g., lead acid)

New Technology Trends

Lots of Innovation to Do in Li-Ion but Other Options Exist

- → Shift to potentially safer chemistries
- → Liquid cooling systems
- → From "containers" to "enclosures"
- → More advanced fire safety systems
- → Wrapped performance guarantees/ long-term service agreements
- → Modular architecture

Integrating Energy Storage with Renewables

Getting It Done

Great opportunities for adding storage to renewables but bear in mind:

- → Falling Costs and increasing revenue opportunities create opportunity
- → AC or DC coupling tradeoffs must be considered
- → Technology is changing quickly and not all Li-Ion systems are comparable
- → Safety is a critical consideration for protecting people and also for insurability and permitting of the project

Thank you